Large separated sets of unit vectors in Banach spaces of continuous functions

Ondřej Kurka

Charles University in Prague

based on a joint work with Marek Cúth and Benjamin Vejnar

Winter School in Abstract Analysis 2018 section Set Theory & Topology

Definition

We say that a set A in a Banach space X is *r*-separated (resp. (r+)-separated) if

$$||u - v|| \ge r$$
 (resp. $||u - v|| > r$)

for all distinct $u, v \in A$.

Definition

We say that a set A in a Banach space X is *r*-separated (resp. (r+)-separated) if

$$||u - v|| \ge r$$
 (resp. $||u - v|| > r$)

for all distinct $u, v \in A$.

Definition

We say that a set A in a Banach space X is *r*-equilateral if

$$\|u-v\|=r$$

for all distinct $u, v \in A$.

(i) If X is a real infinite-dimensional Banach space, can we find a $(1 + \varepsilon)$ -separated (resp. (1+)-separated) subset A of the closed unit ball B_X whose cardinality is dens(X)?

(i) If X is a real infinite-dimensional Banach space, can we find a (1 + ε)-separated (resp. (1+)-separated) subset A of the closed unit ball B_X whose cardinality is dens(X)?
(ii) If not, how big separated set A in B_X can we find?

(i) If X is a real infinite-dimensional Banach space, can we find a (1 + ε)-separated (resp. (1+)-separated) subset A of the closed unit ball B_X whose cardinality is dens(X)?
(ii) If not, how big separated set A in B_X can we find?

Remark

The closed unit ball of $c_0(\Gamma)$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.

(i) If X is a real infinite-dimensional Banach space, can we find a (1 + ε)-separated (resp. (1+)-separated) subset A of the closed unit ball B_X whose cardinality is dens(X)?
(ii) If not, how big separated set A in B_X can we find?

Remark

The closed unit ball of $c_0(\Gamma)$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.

Remark

If K is an infinite compact Hausdorff space, then the density dens(C(K)) equals to its weight w(K).

(i) If X is a real infinite-dimensional Banach space, can we find a (1 + ε)-separated (resp. (1+)-separated) subset A of the closed unit ball B_X whose cardinality is dens(X)?
(ii) If not, how big separated set A in B_X can we find?

Remark

The closed unit ball of $c_0(\Gamma)$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.

Remark

If K is an infinite compact Hausdorff space, then the density dens(C(K)) equals to its weight w(K).

Question B

(i) If K is an infinite compact Hausdorff space, can we find a $(1 + \varepsilon)$ -separated (resp. (1+)-separated) subset A of the closed unit ball $B_{C(K)}$ of the space C(K) whose cardinality is w(K)?

(i) If X is a real infinite-dimensional Banach space, can we find a (1 + ε)-separated (resp. (1+)-separated) subset A of the closed unit ball B_X whose cardinality is dens(X)?
(ii) If not, how big separated set A in B_X can we find?

Remark

The closed unit ball of $c_0(\Gamma)$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.

Remark

If K is an infinite compact Hausdorff space, then the density dens(C(K)) equals to its weight w(K).

Question B

(i) If K is an infinite compact Hausdorff space, can we find a (1 + ε)-separated (resp. (1+)-separated) subset A of the closed unit ball B_{C(K)} of the space C(K) whose cardinality is w(K)?
(ii) If not, how big separated set A in B_{C(K)} can we find?

- S. K. Mercourakis and G. Vassiliadis, *Equilateral sets in Banach spaces of the form C(K)*, Studia Math. **231** (2015), 241–255.
- T. Kania and T. Kochanek, *Uncountable sets of unit vectors that are separated by more than* 1, Studia Math. **232** (2016), 19–44.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K), accepted in Israel J. Math.

If $B_{C(\kappa)}$ contains a $(1 + \varepsilon)$ -separated set of cardinality κ , then it contains a 2-equilateral set of cardinality κ .

Theorem (Elton, Odell)

If X is an infinite-dimensional Banach space, then there is $\varepsilon > 0$ such that B_X contains an infinite $(1 + \varepsilon)$ -separated set.

Theorem (Elton, Odell)

If X is an infinite-dimensional Banach space, then there is $\varepsilon > 0$ such that B_X contains an infinite $(1 + \varepsilon)$ -separated set.

Corollary

If K is an infinite compact Hausdorff space, then $B_{C(K)}$ contains an infinite 2-equilateral set.

Theorem (Elton, Odell)

If X is an infinite-dimensional Banach space, then there is $\varepsilon > 0$ such that B_X contains an infinite $(1 + \varepsilon)$ -separated set.

Corollary

If K is an infinite compact Hausdorff space, then $B_{C(K)}$ contains an infinite 2-equilateral set.

It is therefore possible to consider non-separable spaces only. In fact, we will focus on the C(K) spaces only. So, from now, we assume that K is a non-metrizable compact Hausdorff space.

Theorem (Elton, Odell)

If X is an infinite-dimensional Banach space, then there is $\varepsilon > 0$ such that B_X contains an infinite $(1 + \varepsilon)$ -separated set.

Corollary

If K is an infinite compact Hausdorff space, then $B_{C(K)}$ contains an infinite 2-equilateral set.

It is therefore possible to consider non-separable spaces only. In fact, we will focus on the C(K) spaces only. So, from now, we assume that K is a non-metrizable compact Hausdorff space.

The situation is not clear if the density is uncountable:

Theorem (Koszmider)

It is undecidable in ZFC whether there exists an uncountable 2-equilateral set in $B_{C(K)}$ for every such K.

It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality w(K).

It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality w(K).

Question (Kania, Kochanek)

Does $B_{C(K)}$ always contain a (1+)-separated set of cardinality w(K)?

It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality w(K).

Question (Kania, Kochanek)

Does $B_{C(K)}$ always contain a (1+)-separated set of cardinality w(K)?

Theorem (Kania, Kochanek)

If K is perfectly normal, then $B_{C(K)}$ contains a (1+)-separated set of cardinality w(K).

It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality w(K).

Question (Kania, Kochanek)

Does $B_{C(K)}$ always contain a (1+)-separated set of cardinality w(K)?

Theorem (Kania, Kochanek)

If K is perfectly normal, then $B_{C(K)}$ contains a (1+)-separated set of cardinality w(K).

Theorem 1

If w(K) is at most continuum, then $B_{C(K)}$ contains a (1+)-separated set of cardinality w(K).

If K contains a zero-dimensional compact subspace of the same weight as K, then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

If K contains a zero-dimensional compact subspace of the same weight as K, then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

Proof.

Let *L* be such a subspace and let $\{U_{\alpha}\}_{\alpha < \kappa}$ be a basis of *L* consisting of clopen sets (clearly $\kappa \ge w(L) = w(K)$). Then the system $\{f_{\alpha}\}_{\alpha < w(K)}$ given by

$$f_lpha(x) = egin{cases} 1, & x \in U_lpha, \ -1, & x \in L \setminus U_lpha, \end{cases}$$

forms a 2-equilateral set, and the Tietze theorem concludes the proof.

If K contains a subset A with dens(A) $\ge w(K)$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

If K contains a subset A with dens(A) $\ge w(K)$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

Proof.

We inductively find points $x_{\alpha} \in A, \alpha < w(K)$, such that $x_{\alpha} \notin \overline{\{x_{\beta} : \beta < \alpha\}}$. For each $\alpha < w(K)$, we pick a norm-one function f_{α} such that $f_{\alpha}(x_{\alpha}) = 1$ and $f_{\alpha}(x_{\beta}) = -1$ for $\beta < \alpha$. Then $\{f_{\alpha} : \alpha < w(K)\}$ is a 2-equilateral set.

If K contains a subset A with dens(A) $\ge w(K)$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

Proof.

We inductively find points $x_{\alpha} \in A, \alpha < w(K)$, such that $x_{\alpha} \notin \overline{\{x_{\beta} : \beta < \alpha\}}$. For each $\alpha < w(K)$, we pick a norm-one function f_{α} such that $f_{\alpha}(x_{\alpha}) = 1$ and $f_{\alpha}(x_{\beta}) = -1$ for $\beta < \alpha$. Then $\{f_{\alpha} : \alpha < w(K)\}$ is a 2-equilateral set.

Remark

A similar proof works if there is a point $x \in K$ with $\chi(x, K) \ge w(K)$.

If K contains a subset A with dens(A) $\ge w(K)$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

Proof.

We inductively find points $x_{\alpha} \in A, \alpha < w(K)$, such that $x_{\alpha} \notin \overline{\{x_{\beta} : \beta < \alpha\}}$. For each $\alpha < w(K)$, we pick a norm-one function f_{α} such that $f_{\alpha}(x_{\alpha}) = 1$ and $f_{\alpha}(x_{\beta}) = -1$ for $\beta < \alpha$. Then $\{f_{\alpha} : \alpha < w(K)\}$ is a 2-equilateral set.

Remark

A similar proof works if there is a point $x \in K$ with $\chi(x, K) \ge w(K)$.

Corollary 4

If K is a continuous image of a Valdivia compact space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

If K is a compact line (that is, a linearly ordered space with the order topology), then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

Theorem 6

$B_{C(K \times 2)}$ contains a 2-equilateral set of cardinality w(K).

Theorem 6

 $B_{C(K \times 2)}$ contains a 2-equilateral set of cardinality w(K).

Proof.

It is sufficient to find a $\frac{3}{2}$ -separated set of cardinality w(K). For $f \in C(K \times 2)$ consider the following condition:

$$\forall z \in \mathcal{K}: |f(z,0)| < \frac{1}{2} \implies f(z,1) = -1. \tag{P}$$

Take a maximal $\frac{3}{2}$ -separated family \mathcal{F} (with respect to inclusion) of norm-one functions satisfying (P). We claim that the cardinality of \mathcal{F} equals w(K). In order to get a contradiction, let us assume that \mathcal{F} does not separate the points of $K \times \{0\}$. Thus, for some pair of distinct points $x, y \in K$ and every $g \in \mathcal{F}$, we have g(x, 0) = g(y, 0). Now, consider any norm-one function $f \in C(K \times 2)$ satisfying the condition (P) such that f(y, 0) = -1 and f(x, 0) = f(x, 1) = 1. Such a function exists because we may pick any $\tilde{f} \in B_{C(K)}$ with $\tilde{f}(x) = 1 = -\tilde{f}(y)$ and take any continuous extension of a function defined on disjoint closed sets $K \times \{0\}$, $\{(x, 1)\}$ and $\tilde{f}^{-1}([-\frac{1}{2}, \frac{1}{2}]) \times \{1\}$ in the obvious way, that is, $f(z, 0) = \tilde{f}(z)$ for every $z \in K$, f(x, 1) = 1 and f(z, 1) = -1 for $z \in \tilde{f}^{-1}([-\frac{1}{2}, \frac{1}{2}])$. Fix any $g \in \mathcal{F}$. If $g(x, 0) = g(y, 0) \geq \frac{1}{2}$, then $||f - g|| \geq ||-1 - g(y, 0)| = 1 + g(y, 0) \geq \frac{3}{2}$. If $g(x, 0) = g(y, 0) \leq -\frac{1}{2}$, then $||f - g|| \geq ||-1 - g(x, 0)| = 1 - g(x, 1)| = 1 - g(x, 1) = 2$. Therefore, we have $||f - g|| \geq \frac{3}{2}$ for any $g \in \mathcal{F}$, which is a contradiction with the maximality of \mathcal{F} .

If K is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

If K is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

Corollary 8

If $w(K) \ge (2^{<\kappa})^+$ for some cardinal κ , then $B_{C(K)}$ contains a 2-equilateral set of cardinality κ .

If K is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

Corollary 8

If $w(K) \ge (2^{<\kappa})^+$ for some cardinal κ , then $B_{C(K)}$ contains a 2-equilateral set of cardinality κ .

Proof.

 $(2^{<\kappa})^+
ightarrow (\kappa)_2^2$ (Erdős, Rado).

If K is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality w(K).

Corollary 8

If $w(K) \ge (2^{<\kappa})^+$ for some cardinal κ , then $B_{C(K)}$ contains a 2-equilateral set of cardinality κ .

Proof.

 $(2^{<\kappa})^+
ightarrow (\kappa)_2^2$ (Erdős, Rado).

Corollary 9 (GCH)

- If w(K) is a limit cardinal, then B_{C(K)} contains a 2-equilateral set of cardinality w(K).
- If w(K) = κ⁺ for an infinite cardinal κ, then B_{C(K)} contains a 2-equilateral set of cardinality κ.