# Large separated sets of unit vectors in Banach spaces of continuous functions 

Ondřej Kurka

## Charles University in Prague

based on a joint work with Marek Cúth and Benjamin Vejnar
Winter School in Abstract Analysis 2018
section Set Theory \& Topology

## Definition

We say that a set $A$ in a Banach space $X$ is $r$-separated (resp. ( $r+$ )-separated) if

$$
\|u-v\| \geq r \quad(\text { resp. }\|u-v\|>r)
$$

for all distinct $u, v \in A$.

## Definition

We say that a set $A$ in a Banach space $X$ is $r$-separated (resp. ( $r+$ )-separated) if

$$
\|u-v\| \geq r \quad(\text { resp. }\|u-v\|>r)
$$

for all distinct $u, v \in A$.

## Definition

We say that a set $A$ in a Banach space $X$ is $r$-equilateral if

$$
\|u-v\|=r
$$

for all distinct $u, v \in A$.

## Question A

(i) If $X$ is a real infinite-dimensional Banach space, can we find a $(1+\varepsilon)$-separated (resp. ( $1+$ )-separated) subset $A$ of the closed unit ball $B_{X}$ whose cardinality is dens $(X)$ ?

## Question A

(i) If $X$ is a real infinite-dimensional Banach space, can we find a $(1+\varepsilon)$-separated (resp. (1+)-separated) subset $A$ of the closed unit ball $B_{X}$ whose cardinality is dens $(X)$ ?
(ii) If not, how big separated set $A$ in $B_{X}$ can we find?

## Question A

(i) If $X$ is a real infinite-dimensional Banach space, can we find a
$(1+\varepsilon)$-separated (resp. (1+)-separated) subset $A$ of the closed unit ball $B_{X}$ whose cardinality is dens $(X)$ ?
(ii) If not, how big separated set $A$ in $B_{X}$ can we find?

## Remark

The closed unit ball of $c_{0}(\Gamma)$ does not contain an uncountable $(1+\varepsilon)$-separated set.

## Question A

(i) If $X$ is a real infinite-dimensional Banach space, can we find a
( $1+\varepsilon$ )-separated (resp. ( $1+$ )-separated) subset $A$ of the closed unit ball $B_{X}$ whose cardinality is dens $(X)$ ?
(ii) If not, how big separated set $A$ in $B_{X}$ can we find?

## Remark

The closed unit ball of $c_{0}(\Gamma)$ does not contain an uncountable $(1+\varepsilon)$-separated set.

## Remark

If $K$ is an infinite compact Hausdorff space, then the density dens $(C(K))$ equals to its weight $w(K)$.

## Question A

(i) If $X$ is a real infinite-dimensional Banach space, can we find a
$(1+\varepsilon)$-separated (resp. (1+)-separated) subset $A$ of the closed unit ball $B_{X}$ whose cardinality is dens $(X)$ ?
(ii) If not, how big separated set $A$ in $B_{X}$ can we find?

## Remark

The closed unit ball of $c_{0}(\Gamma)$ does not contain an uncountable $(1+\varepsilon)$-separated set.

## Remark

If $K$ is an infinite compact Hausdorff space, then the density $\operatorname{dens}(C(K))$ equals to its weight $w(K)$.

## Question B

(i) If $K$ is an infinite compact Hausdorff space, can we find a
$(1+\varepsilon)$-separated (resp. ( $1+$ )-separated) subset $A$ of the closed unit ball $B_{C(K)}$ of the space $C(K)$ whose cardinality is $w(K)$ ?

## Question A

(i) If $X$ is a real infinite-dimensional Banach space, can we find a
( $1+\varepsilon$ )-separated (resp. ( $1+$ )-separated) subset $A$ of the closed unit ball $B_{X}$ whose cardinality is dens $(X)$ ?
(ii) If not, how big separated set $A$ in $B_{X}$ can we find?

## Remark

The closed unit ball of $c_{0}(\Gamma)$ does not contain an uncountable $(1+\varepsilon)$-separated set.

## Remark

If $K$ is an infinite compact Hausdorff space, then the density dens $(C(K))$ equals to its weight $w(K)$.

## Question B

(i) If $K$ is an infinite compact Hausdorff space, can we find a
$(1+\varepsilon)$-separated (resp. ( $1+$ )-separated) subset $A$ of the closed unit ball $B_{C(K)}$ of the space $C(K)$ whose cardinality is $w(K)$ ?
(ii) If not, how big separated set $A$ in $B_{C(K)}$ can we find?

目 S. K. Mercourakis and G. Vassiliadis, Equilateral sets in Banach spaces of the form $C(K)$, Studia Math. 231 (2015), 241-255.
(國 T. Kania and T. Kochanek, Uncountable sets of unit vectors that are separated by more than 1, Studia Math. 232 (2016), 19-44.
R P. Koszmider, Uncountable equilateral sets in Banach spaces of the form $C(K)$, accepted in Israel J. Math.

## Remark

If $B_{C(K)}$ contains a $(1+\varepsilon)$-separated set of cardinality $\kappa$, then it contains a 2-equilateral set of cardinality $\kappa$.

The situation is clear if the density is countable:

## Theorem (Elton, Odell)

If $X$ is an infinite-dimensional Banach space, then there is $\varepsilon>0$ such that $B_{X}$ contains an infinite $(1+\varepsilon)$-separated set.

The situation is clear if the density is countable:

## Theorem (Elton, Odell)

If $X$ is an infinite-dimensional Banach space, then there is $\varepsilon>0$ such that $B_{X}$ contains an infinite $(1+\varepsilon)$-separated set.

## Corollary

If $K$ is an infinite compact Hausdorff space, then $B_{C(K)}$ contains an infinite 2-equilateral set.

The situation is clear if the density is countable:

## Theorem (Elton, Odell)

If $X$ is an infinite-dimensional Banach space, then there is $\varepsilon>0$ such that $B_{X}$ contains an infinite $(1+\varepsilon)$-separated set.

## Corollary

If $K$ is an infinite compact Hausdorff space, then $B_{C(K)}$ contains an infinite 2-equilateral set.

It is therefore possible to consider non-separable spaces only. In fact, we will focus on the $C(K)$ spaces only. So, from now, we assume that $K$ is a non-metrizable compact Hausdorff space.

The situation is clear if the density is countable:

## Theorem (Elton, Odell)

If $X$ is an infinite-dimensional Banach space, then there is $\varepsilon>0$ such that $B_{X}$ contains an infinite $(1+\varepsilon)$-separated set.

## Corollary

If $K$ is an infinite compact Hausdorff space, then $B_{C(K)}$ contains an infinite 2-equilateral set.

It is therefore possible to consider non-separable spaces only. In fact, we will focus on the $C(K)$ spaces only. So, from now, we assume that $K$ is a non-metrizable compact Hausdorff space.

The situation is not clear if the density is uncountable:

## Theorem (Koszmider)

It is undecidable in ZFC whether there exists an uncountable 2-equilateral set in $B_{C(K)}$ for every such $K$.

## Remark

It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality $w(K)$.

## Remark

It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality $w(K)$.

## Question (Kania, Kochanek)

Does $B_{C(K)}$ always contain a (1+)-separated set of cardinality $w(K)$ ?

## Remark

It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality $w(K)$.

## Question (Kania, Kochanek)

Does $B_{C(K)}$ always contain a (1+)-separated set of cardinality $w(K)$ ?

Theorem (Kania, Kochanek)
If $K$ is perfectly normal, then $B_{C(K)}$ contains a (1+)-separated set of cardinality $w(K)$.

## Remark

It is not difficult to show that $B_{C(K)}$ contains a 1-separated set of cardinality $w(K)$.

## Question (Kania, Kochanek)

Does $B_{C(K)}$ always contain a (1+)-separated set of cardinality $w(K)$ ?

Theorem (Kania, Kochanek)
If $K$ is perfectly normal, then $B_{C(K)}$ contains a (1+)-separated set of cardinality $w(K)$.

## Theorem 1

If $w(K)$ is at most continuum, then $B_{C(K)}$ contains a $(1+)$-separated set of cardinality $w(K)$.

## Proposition 2

If $K$ contains a zero-dimensional compact subspace of the same weight as $K$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Proposition 2

If $K$ contains a zero-dimensional compact subspace of the same weight as $K$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Proof.

Let $L$ be such a subspace and let $\left\{U_{\alpha}\right\}_{\alpha<\kappa}$ be a basis of $L$ consisting of clopen sets (clearly $\kappa \geq w(L)=w(K)$ ). Then the system $\left\{f_{\alpha}\right\}_{\alpha<w(K)}$ given by

$$
f_{\alpha}(x)= \begin{cases}1, & x \in U_{\alpha} \\ -1, & x \in L \backslash U_{\alpha}\end{cases}
$$

forms a 2-equilateral set, and the Tietze theorem concludes the proof.

## Proposition 3

If $K$ contains a subset $A$ with $\operatorname{dens}(A) \geq w(K)$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Proposition 3

If $K$ contains a subset $A$ with dens $(A) \geq w(K)$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Proof.

We inductively find points $x_{\alpha} \in A, \alpha<w(K)$, such that $x_{\alpha} \notin \overline{\left\{x_{\beta}: \beta<\alpha\right\}}$.
For each $\alpha<w(K)$, we pick a norm-one function $f_{\alpha}$ such that $f_{\alpha}\left(x_{\alpha}\right)=1$ and $f_{\alpha}\left(x_{\beta}\right)=-1$ for $\beta<\alpha$.
Then $\left\{f_{\alpha}: \alpha<w(K)\right\}$ is a 2-equilateral set.

## Proposition 3

If $K$ contains a subset $A$ with dens $(A) \geq w(K)$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Proof.

We inductively find points $x_{\alpha} \in A, \alpha<w(K)$, such that $x_{\alpha} \notin \overline{\left\{x_{\beta}: \beta<\alpha\right\}}$.
For each $\alpha<w(K)$, we pick a norm-one function $f_{\alpha}$ such that $f_{\alpha}\left(x_{\alpha}\right)=1$ and $f_{\alpha}\left(x_{\beta}\right)=-1$ for $\beta<\alpha$.
Then $\left\{f_{\alpha}: \alpha<w(K)\right\}$ is a 2-equilateral set.

## Remark

A similar proof works if there is a point $x \in K$ with $\chi(x, K) \geq w(K)$.

## Proposition 3

If $K$ contains a subset $A$ with dens $(A) \geq w(K)$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Proof.

We inductively find points $x_{\alpha} \in A, \alpha<w(K)$, such that $x_{\alpha} \notin\left\{x_{\beta}: \beta<\alpha\right\}$.
For each $\alpha<w(K)$, we pick a norm-one function $f_{\alpha}$ such that $f_{\alpha}\left(x_{\alpha}\right)=1$ and $f_{\alpha}\left(x_{\beta}\right)=-1$ for $\beta<\alpha$.
Then $\left\{f_{\alpha}: \alpha<w(K)\right\}$ is a 2-equilateral set.

## Remark

A similar proof works if there is a point $x \in K$ with $\chi(x, K) \geq w(K)$.

## Corollary 4

If $K$ is a continuous image of a Valdivia compact space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Proposition 5

If $K$ is a compact line (that is, a linearly ordered space with the order topology), then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Theorem 6

$B_{C(K \times 2)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Theorem 6

## $B_{C(K \times 2)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Proof.

It is sufficient to find a $\frac{3}{2}$-separated set of cardinality $w(K)$.
For $f \in C(K \times 2)$ consider the following condition:

$$
\begin{equation*}
\forall z \in K:|f(z, 0)|<\frac{1}{2} \Longrightarrow f(z, 1)=-1 \tag{P}
\end{equation*}
$$

Take a maximal $\frac{3}{2}$-separated family $\mathcal{F}$ (with respect to inclusion) of norm-one functions satisfying (P).
We claim that the cardinality of $\mathcal{F}$ equals $w(K)$. In order to get a contradiction, let us assume that $\mathcal{F}$ does not separate the points of $K \times\{0\}$. Thus, for some pair of distinct points $x, y \in K$ and every $g \in \mathcal{F}$, we have $g(x, 0)=g(y, 0)$. Now, consider any norm-one function $f \in C(K \times 2)$ satisfying the condition (P) such that $f(y, 0)=-1$ and $f(x, 0)=f(x, 1)=1$. Such a function exists because we may pick any $\tilde{f} \in B_{C(K)}$ with $\tilde{f}(x)=1=-\tilde{f}(y)$ and take any continuous extension of a function defined on disjoint closed sets $K \times\{0\}$, $\{(x, 1)\}$ and $\tilde{f}^{-1}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right) \times\{1\}$ in the obvious way, that is, $f(z, 0)=\tilde{f}(z)$ for every $z \in K, f(x, 1)=1$ and $f(z, 1)=-1$ for $z \in \tilde{f}^{-1}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$.
Fix any $g \in \mathcal{F}$.
If $g(x, 0)=g(y, 0) \geq \frac{1}{2}$, then $\|f-g\| \geq|-1-g(y, 0)|=1+g(y, 0) \geq \frac{3}{2}$.
If $g(x, 0)=g(y, 0) \leq-\frac{1}{2}$, then $\|f-g\| \geq|1-g(x, 0)|=1-g(x, 0) \geq \frac{3}{2}$.
If $|g(x, 0)|<\frac{1}{2}$, then since $g$ satisfies $(P)$ we have $\|f-g\| \geq|f(x, 1)-g(x, 1)|=1-g(x, 1)=2$.
Therefore, we have $\|f-g\| \geq \frac{3}{2}$ for any $g \in \mathcal{F}$, which is a contradiction with the maximality of $\mathcal{F}$.

## Corollary 7

If $K$ is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Corollary 7

If $K$ is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Corollary 8

If $w(K) \geq\left(2^{<\kappa}\right)^{+}$for some cardinal $\kappa$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $\kappa$.

## Corollary 7

If $K$ is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Corollary 8

If $w(K) \geq\left(2^{<\kappa}\right)^{+}$for some cardinal $\kappa$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $\kappa$.

## Proof.

$$
\left(2^{<\kappa}\right)^{+} \rightarrow(\kappa)_{2}^{2} \quad \text { (Erdős, Rado) }
$$

## Corollary 7

If $K$ is a compact convex set in a locally convex space, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.

## Corollary 8

If $w(K) \geq\left(2^{<\kappa}\right)^{+}$for some cardinal $\kappa$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $\kappa$.

## Proof.

$\left(2^{<\kappa}\right)^{+} \rightarrow(\kappa)_{2}^{2} \quad$ (Erdős, Rado).

## Corollary 9 (GCH)

(1) If $w(K)$ is a limit cardinal, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $w(K)$.
(2) If $w(K)=\kappa^{+}$for an infinite cardinal $\kappa$, then $B_{C(K)}$ contains a 2-equilateral set of cardinality $\kappa$.

