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Introduction (1+)-separated sets 2-equilateral sets

Definition
We say that a set A in a Banach space X is r-separated (resp.
(r+)-separated) if

∥u − v∥ ≥ r (resp. ∥u − v∥ > r)

for all distinct u, v ∈ A.

Definition
We say that a set A in a Banach space X is r-equilateral if

∥u − v∥ = r

for all distinct u, v ∈ A.
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Question A
(i) If X is a real infinite-dimensional Banach space, can we find a
(1 + ε)-separated (resp. (1+)-separated) subset A of the closed unit ball
BX whose cardinality is dens(X)?

(ii) If not, how big separated set A in BX can we find?

Remark
The closed unit ball of c0(Γ) does not contain an uncountable
(1 + ε)-separated set.

Remark
If K is an infinite compact Hausdorff space, then the density dens(C(K))
equals to its weight w(K).

Question B
(i) If K is an infinite compact Hausdorff space, can we find a
(1 + ε)-separated (resp. (1+)-separated) subset A of the closed unit ball
BC(K) of the space C(K) whose cardinality is w(K)?
(ii) If not, how big separated set A in BC(K) can we find?
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Remark
If BC(K) contains a (1 + ε)-separated set of cardinality κ, then it
contains a 2-equilateral set of cardinality κ.
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The situation is clear if the density is countable:
Theorem (Elton, Odell)
If X is an infinite-dimensional Banach space, then there is ε > 0
such that BX contains an infinite (1 + ε)-separated set.

Corollary
If K is an infinite compact Hausdorff space, then BC(K) contains an
infinite 2-equilateral set.

It is therefore possible to consider non-separable spaces only.
In fact, we will focus on the C(K) spaces only. So, from now, we
assume that K is a non-metrizable compact Hausdorff space.

The situation is not clear if the density is uncountable:
Theorem (Koszmider)
It is undecidable in ZFC whether there exists an uncountable
2-equilateral set in BC(K) for every such K.
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Remark
It is not difficult to show that BC(K) contains a 1-separated set of
cardinality w(K).

Question (Kania, Kochanek)
Does BC(K) always contain a (1+)-separated set of cardinality
w(K)?

Theorem (Kania, Kochanek)
If K is perfectly normal, then BC(K) contains a (1+)-separated set
of cardinality w(K).

Theorem 1
If w(K) is at most continuum, then BC(K) contains a
(1+)-separated set of cardinality w(K).
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Proposition 2
If K contains a zero-dimensional compact subspace of the same
weight as K, then BC(K) contains a 2-equilateral set of cardinality
w(K).

Proof.
Let L be such a subspace and let {Uα}α<κ be a basis of L
consisting of clopen sets (clearly κ ≥ w(L) = w(K)).
Then the system {fα}α<w(K) given by

fα(x) =
{

1, x ∈ Uα,

−1, x ∈ L \ Uα,

forms a 2-equilateral set, and the Tietze theorem concludes the
proof.
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Proposition 3
If K contains a subset A with dens(A) ≥ w(K), then BC(K)

contains a 2-equilateral set of cardinality w(K).

Proof.
We inductively find points xα ∈ A, α < w(K), such that
xα /∈ {xβ : β < α}.
For each α < w(K), we pick a norm-one function fα such that
fα(xα) = 1 and fα(xβ) = −1 for β < α.
Then {fα : α < w(K)} is a 2-equilateral set.

Remark
A similar proof works if there is a point x ∈ K with χ(x,K) ≥ w(K).

Corollary 4
If K is a continuous image of a Valdivia compact space, then BC(K)

contains a 2-equilateral set of cardinality w(K).
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Proposition 5
If K is a compact line (that is, a linearly ordered space with the
order topology), then BC(K) contains a 2-equilateral set of
cardinality w(K).
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Theorem 6
BC(K×2) contains a 2-equilateral set of cardinality w(K).

Proof.

It is sufficient to find a 3
2 -separated set of cardinality w(K).

For f ∈ C(K × 2) consider the following condition:

∀z ∈ K : |f(z, 0)| < 1
2 =⇒ f(z, 1) = −1. (P)

Take a maximal 3
2 -separated family F (with respect to inclusion) of norm-one functions satisfying (P).

We claim that the cardinality of F equals w(K). In order to get a contradiction, let us assume that F does not
separate the points of K × {0}. Thus, for some pair of distinct points x, y ∈ K and every g ∈ F, we have
g(x, 0) = g(y, 0). Now, consider any norm-one function f ∈ C(K × 2) satisfying the condition (P) such that
f(y, 0) = −1 and f(x, 0) = f(x, 1) = 1. Such a function exists because we may pick any f̃ ∈ BC(K) with
f̃(x) = 1 = −f̃(y) and take any continuous extension of a function defined on disjoint closed sets K × {0},
{(x, 1)} and f̃−1([− 1

2 ,
1
2 ]) × {1} in the obvious way, that is, f(z, 0) = f̃(z) for every z ∈ K, f(x, 1) = 1 and

f(z, 1) = −1 for z ∈ f̃−1([− 1
2 ,

1
2 ]).

Fix any g ∈ F.
If g(x, 0) = g(y, 0) ≥ 1

2 , then ∥f − g∥ ≥ | − 1 − g(y, 0)| = 1 + g(y, 0) ≥ 3
2 .

If g(x, 0) = g(y, 0) ≤ − 1
2 , then ∥f − g∥ ≥ |1 − g(x, 0)| = 1 − g(x, 0) ≥ 3

2 .

If |g(x, 0)| < 1
2 , then since g satisfies (P) we have ∥f − g∥ ≥ |f(x, 1) − g(x, 1)| = 1 − g(x, 1) = 2.

Therefore, we have ∥f − g∥ ≥ 3
2 for any g ∈ F, which is a contradiction with the maximality of F.
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Corollary 7
If K is a compact convex set in a locally convex space, then BC(K)

contains a 2-equilateral set of cardinality w(K).

Corollary 8
If w(K) ≥ (2<κ)+ for some cardinal κ, then BC(K) contains a
2-equilateral set of cardinality κ.

Proof.
(2<κ)+ → (κ)2

2 (Erdős, Rado).

Corollary 9 (GCH)
1 If w(K) is a limit cardinal, then BC(K) contains a 2-equilateral

set of cardinality w(K).
2 If w(K) = κ+ for an infinite cardinal κ, then BC(K) contains a

2-equilateral set of cardinality κ.
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