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Definition
We say that a set A in a Banach space X'is r-separated (resp.
(r+)-separated) if

lu—=v=r (resp. lu—vl[>r)

for all distinct u, v € A.
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Definition
We say that a set A in a Banach space X'is r-separated (resp.
(r+)-separated) if

lu—=v=r (resp. lu—vl[>r)

for all distinct u, v € A.

Definition
We say that a set A in a Banach space X is r-equilateral if

Ju—vll=r

for all distinct u, v € A.
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(1 + €)-separated (resp. (1+)-separated) subset A of the closed unit ball
Bx whose cardinality is dens(X)?
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Remark

If Be(ky contains a (1 + ¢)-separated set of cardinality x, then it
contains a 2-equilateral set of cardinality .
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The situation is clear if the density is countable:
Theorem (Elton, Odell)

If X is an infinite-dimensional Banach space, then there is € > 0
such that Bx contains an infinite (1 + €)-separated set.
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In fact, we will focus on the C(K) spaces only. So, from now, we
assume that K'is a non-metrizable compact Hausdorff space.
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The situation is clear if the density is countable:

Theorem (Elton, Odell)

If X is an infinite-dimensional Banach space, then there is € > 0
such that Bx contains an infinite (1 + €)-separated set.

Corollary

If K is an infinite compact Hausdorff space, then B¢k contains an
infinite 2-equilateral set.

It is therefore possible to consider non-separable spaces only.
In fact, we will focus on the C(K) spaces only. So, from now, we
assume that K'is a non-metrizable compact Hausdorff space.

The situation is not clear if the density is uncountable:

Theorem (Koszmider)

It is undecidable in ZFC whether there exists an uncountable
2-equilateral set in B¢k for every such K.
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Remark

It is not difficult to show that B¢(k) contains a 1-separated set of
cardinality w(K).

Question (Kania, Kochanek)

Does Bk, always contain a (1+)-separated set of cardinality
w(K)?

Theorem (Kania, Kochanek)

If K is perfectly normal, then B¢y contains a (14)-separated set
of cardinality w(K).

Theorem 1

If w(K) is at most continuum, then B¢ (k) contains a
(14)-separated set of cardinality w(K).
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Proposition 2

If K contains a zero-dimensional compact subspace of the same
weight as K, then Bck) contains a 2-equilateral set of cardinality

w(K).



(14)-separated sets 2-equilateral sets

@0000

Proposition 2

If K contains a zero-dimensional compact subspace of the same
weight as K, then Bck) contains a 2-equilateral set of cardinality

w(K).

Proof.

Let L be such a subspace and let {U,}o<x be a basis of L
consisting of clopen sets (clearly k > w(L) = w(K)).
Then the system {f,}<w(k) given by

1 s
£(x) = , xe U
-1, xe L\ Uy,

forms a 2-equilateral set, and the Tietze theorem concludes the
proof. O
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Proposition 3

If K contains a subset A with dens(A) > w(K), then Bk
contains a 2-equilateral set of cardinality w(K).
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Proposition 3

If K contains a subset A with dens(A) > w(K), then Bk
contains a 2-equilateral set of cardinality w(K).

Proof.

We inductively find points x, € A, @ < w(K), such that

Xa & {x5: 8 < a}.

For each oo < w(K), we pick a norm-one function f, such that
fa(Xa) = 1 and fu(x3) = —1 for 5 < a.

Then {f, : @ < w(K)} is a 2-equilateral set. O
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Proposition 3

If K contains a subset A with dens(A) > w(K), then Bk
contains a 2-equilateral set of cardinality w(K).

Proof.
We inductively find points x, € A, @ < w(K), such that

Xa & {x5: 8 < a}.

For each o < w(K), we pick a norm-one function f, such that
fa(Xa) = 1 and fu(x3) = —1 for 5 < a.

Then {f, : @ < w(K)} is a 2-equilateral set. O

Remark
A similar proof works if there is a point x € K with x(x, K) > w(K).
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Proposition 3

If K contains a subset A with dens(A) > w(K), then Bk
contains a 2-equilateral set of cardinality w(K).

Proof.
We inductively find points x, € A, @ < w(K), such that

Xa & {x5: 8 < a}.

For each o < w(K), we pick a norm-one function f, such that
fa(Xa) = 1 and fu(x3) = —1 for 5 < a.

Then {f, : @ < w(K)} is a 2-equilateral set. O
Remark

A similar proof works if there is a point x € K with x(x, K) > w(K).

Corollary 4

If K is a continuous image of a Valdivia compact space, then B¢k
contains a 2-equilateral set of cardinality w(K).
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Proposition 5

If K is a compact line (that is, a linearly ordered space with the
order topology), then Be(ky contains a 2-equilateral set of
cardinality w(K).
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Theorem 6
Bc(kx2) contains a 2-equilateral set of cardinality w(K). J
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Theorem 6
Bc(kx2) contains a 2-equilateral set of cardinality w(K).

Proof.

It is sufficient to find a %-separated set of cardinality w(K).
For f € C(K x 2) consider the following condition:

VzEK: [fz,0) < 1 = flz1)=-1. (P)

Take a maximal %—separated family F (with respect to inclusion) of norm-one functions satisfying (P).

We claim that the cardinality of & equals w(K). In order to get a contradiction, let us assume that JF does not
separate the points of K X {0}. Thus, for some pair of distinct points x, y € K and every g € F, we have
g(x, 0) = g(y, 0). Now, consider any norm-one function f € C(K X 2) satisfying the condition (P) such that
fly,0) = —1 and f{x,0) = f(x, 1) = 1. Such a function exists because we may pick any f € B¢ with

Ax) = 1 = —Hy) and take any continuous extension of a function defined on disjoint closed sets K x {0},
{(x, 1)} and 7 1( —%, %]) x {1} in the obvious way, that is, f{z, 0) = f(z) for every z € K, f(x,1) = 1 and
flz,1) = —1for z € F (-3, 3)).

Fix any g € J.

If g(x, 0) = &(y,0) > 3, then [[f—g|l > | — 1 — &y, 0)| =1+g(y,0) > 3.

If g(x, 0) = g(y,0) < —3, then || — gl > |1 — g(x,0)| =1 — g(x,0) > 3.

If |g(x,0)] < % then since g satisfies (P) we have ||[f— g|| > [fix,1) — g(x,1)| =1 — g(x,1) = 2.
Therefore, we have ||f— g|| > % for any g € F, which is a contradiction with the maximality of F. O
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Corollary 7

If K is a compact convex set in a locally convex space, then B¢y
contains a 2-equilateral set of cardinality w(K).
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Corollary 7

If K is a compact convex set in a locally convex space, then B¢y
contains a 2-equilateral set of cardinality w(K).

Corollary 8

If W(K) > (2<")* for some cardinal r, then Bc(k) contains a
2-equilateral set of cardinality k.
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Corollary 7

If K is a compact convex set in a locally convex space, then B¢y
contains a 2-equilateral set of cardinality w(K).

Corollary 8

If W(K) > (2<")* for some cardinal r, then Bc(k) contains a
2-equilateral set of cardinality k.

Proof.
(2<#)T — (k)3 (Erdés, Rado). O
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Corollary 7

If K is a compact convex set in a locally convex space, then B¢y
contains a 2-equilateral set of cardinality w(K).

Corollary 8

If W(K) > (2<")* for some cardinal r, then Bc(k) contains a
2-equilateral set of cardinality k.

Proof.
(2<#)T — (k)3 (Erdés, Rado). O

Corollary 9 (GCH)

Q /f w(K) is a limit cardinal, then B¢y contains a 2-equilateral
set of cardinality w(K).

Q Ifw(K) = w* for an infinite cardinal r, then Be(k) contains a
2-equilateral set of cardinality k.
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